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Part 1: Theory 





  Advances in Assembly !

First PacBio RS 
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Error correction and assembly complexity of single molecule sequencing reads. 
Lee, H*, Gurtowski, J*, Yoo, S, Marcus, S, McCombie, WR, Schatz, MC 
http://www.biorxiv.org/content/early/2014/06/18/006395 



Pan-Genome Alignment & Assembly 

SplitMEM: Graphical pan-genome analysis with suffix skips 
Marcus, S, Lee, H, Schatz, MC 
http://biorxiv.org/content/early/2014/04/06/003954  

Pan-genome colored de Bruijn graph!
•  Encodes all the sequence 

relationships between the genomes!
•  How well conserved is a given 

sequence?  !
•  What are the pan-genome 

network properties?!

Time to start considering problems 
for which N complete genomes are 
the input to study the “pan-genome”!
•  Available today for many microbial 

species, near future for higher 
eukaryotes!
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Graphical pan-genome analysis 
Colored de Bruijn graph 
•  Node for each distinct kmer 
•  Directed edge connects consecutive kmers 
•  Nodes overlap by k-1 bp 
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Graphical pan-genome analysis 
Colored de Bruijn graph 
•  Node for each distinct kmer 
•  Directed edge connects consecutive kmers 
•  Nodes overlap by k-1 bp 
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More specifically:!
•  We aim to build the compressed de Bruijn graph as quickly as possible without 

considering every distinct kmer!

AGAAGTCC !
 !

ATAAGTTA !



Maximal Exact Matches (MEMs) "
to de Bruijn Graphs!

 GCA!

T G C A C … G G C A A  



Overlapping MEMs 

T G C C AT C G C C A A C C AT  

T G C C AT C G C C A A C C AT  



Suffix Trees & de Bruijn Graphs 

Key concepts:  
•  Shared sequences form repeats called “maximal exact matches” (MEM) 
•  Easy to identify MEMs in a suffix tree, but may be nested within other MEMs 
•  Use “suffix skips” to quickly decompose MEMs, add in the missing nodes and edges 



B. anthracis pan-genome  
(9 strains) 

k=25 k=1000 



Microbial Pan-Genomes 
E. coli (62) and B. anthracis (9) pan-genome analysis!
•  Analyzed all available strains in Genbank!
•  Space and time are effectively linear in the number of genomes!

•  O(n log g) where g is the length of the longest genome!
!

Many possible applications: !
•  Identifying “core” genes present in all strains!
•  Characterizing highly variable regions (+ flanking shared) !
•  Cataloging sequences shared by pathogenic varieties!

62 strain E. coli Pan-Genome Node Sharing!



Part 2: Practice 



Genetics of Autism Spectrum Disorders 

1.  Constructed database of >1M transmitted and de novo indels in ~1000 families 
2.  For practical reasons, analysis is computed relative to the (unpatched) reference genome 

•  We use population statistics to “clean” problematic regions 
•  We believe we are missing and/or misinterpreting some interesting variants  

Accurate de novo and transmitted indel detection in exome-capture data using microassembly. 
Narzisi et al. (2014) Nature Methods. doi:10.1038/nmeth.3069 



Indica 
 

Total Span: 344.3 Mbp 
Contig N50: 22.2kbp 

 
 
 

Aus 
 

Total Span: 344.9Mbp 
Contig N50: 25.5kbp 

Whole genome de novo assemblies of three divergent strains of rice (O. sativa) 
documents novel gene space of aus and indica  
Schatz, Maron, Stein et al (2014) http://biorxiv.org/content/early/2014/04/02/003764 

Nipponbare 
 

Total Span: 354.9Mbp 
Contig N50: 21.9kbp 

Population structure of Oryza sativa 



Pan-genomics of draft assemblies 

Strategy:!
1.  Align the genomes to each other 

(MUMmer)!
2.  Identify segments of genome A that 

do not align anywhere to genome B 
(BEDTools)!

! Megabases specific to each genome!!!!!

3.  Screen regions that fail to align with 
their k-mer frequencies (jellyfish)!
•  “Genome specific regions” 

averaged over 10,000x kmer 
coverage while unique regions 
were ~50x!

! 100s of KB specific to each genome!!!!
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Genome-specific Regions 

Successfully able to identify many regions specific to each genome (30/30 PCR validation)!
Enriched for genes for disease resistance & other interesting phenotypes!



Pan-genomics Summary 
•  Now is the time to study pan-genomes 

–  Perfect assemblies of microbes and many smaller eukaryotic genomes are 
now routine 

–  Expect to rapidly scale up these results to larger genomes soon 

•  Algorithms must scale to large collections, be robust to 
errors, gaps, and ambiguity 
–  Large body of assembly and alignment theory can be repurposed 
–  Simple refinements, like k-mer screening, can be very effective even if the 

sequence is lacking 

•  The “right approach” will depend on the questions you ask 
–  We all agree we need to work from a graph, but there is not a clear 

consensus of what the graph should represent or how it should be encoded. 
–  Ultimately the needs will be driven by applications 

•  graph-BLAST, -BWA, -SAMTools, -TopHat/Cufflinks, -IGV, -UCSC, -MAKER, … 
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